An Efficient Initialization Method for Nonnegative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
SVD based initialization: A head start for nonnegative matrix factorization
We describe Nonnegative Double Singular Value Decomposition (NNDSVD), a new method designed to enhance the initialization stage of nonnegative matrix factorization (NMF). NNDSVD can readily be combined with existing NMF algorithms. The basic algorithm contains no randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the ...
متن کاملEfficient Nonnegative Matrix Factorization via projected Newton method
Nonnegative Matrix Factorization (NMF) is a popular decomposition technique in pattern analysis, document clustering, image processing and related fields. In this paper, we propose a fast NMF algorithm via Projected Newton Method (PNM). First, we propose PNM to efficiently solve a nonnegative least squares problem, which achieves a quadratic convergence rate under appropriate assumptions. Secon...
متن کاملEfficient Nonnegative Matrix Factorization with Random Projections
The recent years have witnessed a surge of interests in Nonnegative Matrix Factorization (NMF) in data mining and machine learning fields. Despite its elegant theory and empirical success, one of the limitations of NMF based algorithms is that it needs to store the whole data matrix in the entire process, which requires expensive storage and computation costs when the data set is large and high...
متن کاملAn Efficient Nonnegative Matrix Factorization Approach in Flexible Kernel Space
In this paper, we propose a general formulation for kernel nonnegative matrix factorization with flexible kernels. Specifically, we propose the Gaussian nonnegative matrix factorization (GNMF) algorithm by using the Gaussian kernel in the framework. Different from a recently developed polynomial NMF (PNMF), GNMF finds basis vectors in the kernel-induced feature space and the computational cost ...
متن کاملQuantized nonnegative matrix factorization
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2011
ISSN: 1812-5654
DOI: 10.3923/jas.2011.354.359